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Hierarchy of Chaotic Bands 
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Results of a detailed numerical study on the structure of chaotic bands in a 
forced limit cycle oscillator (the Brusselator) are presented. Embedded in the 
chaotic bands of primary bifurcation sequence there are many secondary 
sequences with both direct and inverse segments. Within secondary chaotic 
bands tertiary sequences of similar structure exist. This has been shown by using 
subharmonic stroboscopic sampling combined with power spectra analysis. 
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1. INTRODUCTION 

The occurrence of chaotic behavior in simple dynamical systems has been 
raising more and more interest. It is hoped to give more insight into the 
difficult and long-standing problem of the onset of turbulence as well as to 
diminish the gap between deterministic and stochastic description in phys- 
ics. 

For the time being most of our knowledge of chaotic behavior comes 
from studies on discrete nonlinear mappings. In particular, direct period- 
doubling bifurcation sequence, leading to inverse sequence of chaotic 
bands, has been observed in many one- and two-dimensional iterated maps 
(for a recent review see Ref. 1 and references therein). Many properties 
related to these mappings, such as convergence rate of the bifurcation 
sequences and some characteristics of the power spectra, have been shown 
to be universal, (1-4) i.e., independent of the detailed structure of the 
mapping themselves. Moreover, there have been indications that such 
universal properties persist for higher-dimensional systems (5) and systems 
described by differential equations as well. 
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In spite of the importance of differential equations in physics, only 
relatively few cases have been reported. So far two groups of systems have 
been studied. The first group includes autonomous differential equations 
with three or more variables. These equations have been obtained either by 
truncating the Navier-Stokes equations (6'7) or by artificial construction. (8'9) 
The second group consists of nonlinear oscillators driven by external 
periodic force. Examples are anharmonic oscillator, O~ parametrically ex- 
cited pendulum, (H) or the forced Brusselator, O2'13) which is also the subject 
of our paper. These two groups are related. (~4'15) In particular, periodically 
driven systems can be written as systems of autonomous differential equa- 
tions by introducing new variables. 

We would like to emphasize that the second group mentioned above 
has the advantage that bifurcations in them may be understood as sub- 
harmonic entrainment (frequency-locking) of nonlinear oscillators and the 
existence of an external frequency as control parameter opens the possibil- 
ity to use subharmonic stroboscopic sampling (16) to reach much higher 
resolution (up to 8192th subharmonic in this paper) than any present-day 
power spectra analysis would give. 

2. THE MODEL 

We study the following system of ordinary differential equations: 

) ( = A - ( B +  1 ) X + X 2 y  

= B x  - x 2 r  (1) 

adding a period external force a cos(~0t) to the first equation. System (1) 
describes a hypothetical three-molecular chemicai reaction with autocata- 
lytic step under far from equilibrium conditions (it is usually called the 
Brusselator(17)). For parameter values, satisfying inequality 

B > A 2 +  1 (2)  

it displays a limit cycle oscillation. With diffusion term added, system (1) 
shows a variety of spatial and temporal patterns and there exists a wide 
literature devoted to its study (cf. Ref. 18 and references therein). 

By introducing new variables Z, U and fixing the initial conditions 
Z(0) = 1, U(0) = 0, the periodically forced Brusselator is equivalent to the 
following system of autonomous differential equations 

)(----A - ( B +  1 ) X + X 2 y + o t Z  

i r  = (3) 
2 = -~0U 

U =  o~Z 
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Of course, there are many other ways to write this system, but we prefer (3), 
because it saves computer time owing to the absence of cosine. 

In system (3) the nonlinear oscillator (1) is coupled to a linear 
oscillator by a linear term a Z  and parameters a, ~o enter the system on the 
same footing. Systems studied in Refs. 10 and 11 can be treated similarly. 
This leads us to a physical way of understanding period-doubling bifurca- 
tions in such systems. A nonlinear oscillator tends to follow the external 
frequency ~0 exactly. When the frequency difference between the limit cycle 
and the external force increases it adapts to 1//2, 1//4, 1//8, etc. of ~0 
(subharmonic entrainment) and finally falls into a wandering regime. 

The forced Brusselator was studied first by Tomita and Kai. (12'13) 
They discovered a region of chaotic response on the a-o~ plane, surrounded 
by period-doubling bifurcations. Since their work had been completed 
before the upsurge of papers, triggered by Feigenbaum's discovery of 
universality and scaling, (2) many questions remain unclear, e.g., whether 
the convergence rate is governed by the same Feigenbaum constant 8 = 
4 .66920. . . ,  does there exist inverse sequence of chaotic bands, what is the 
systematics of periods 12, 40, or 44, indicated in Ref. 13 as being embedded 
in the chaotic region, etc . . . .  Furthermore, no power spectra were given 
in Ref. 13, which was specially devoted to the chaotic region. In view of 
recent accumulation of knowledge on discrete mappings it is desirable to 
have a deeper understanding of systems, described by differential equa- 
tions. This was our motivation to undertake a more detailed study of 
system (3). 

3. THE METHODS 

To explore the very subtle structure of chaotic bands we have to rely 
heavily on numerical studies. In doing so one should always be cautious 
not to be deceived in phenomena caused by the numerical algorithm or the 
computer itself. (There was a recent report (w/ that two computers had 
given qualitatively different results for one and the same mapping.) 

The main difficulty with differential equations lies in getting high 
enough resolution of subharmonic frequencies within reasonable computing 
time. This is a much more complicated task compared to the case of 
iterated maps, where bifurcations of rather high orders have been identified 
with remarkable precision. For each set of parameter values one has to 
integrate the system and wait for the transients to die out. The closer the 
bifurcation point, the longer the transient (for this critical slowing-down, 
see Ref. 20). Then both truncation and round-off errors may come into 
play. 

We shall devote the methodological aspects to a separate publication 
elsewhere and only sketch here the methods used. Briefly speaking, we have 
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been working in three different domains and the results are expressed in 
various sections of the parameter space (A, B, a, ~o) of system (3). 

(a) Subharmonic stroboscopic sampling in the time domain. (16) This 
is a simple extension of the usual stroboscopic idea. (21~ If the system under- 
goes period-doubling bifurcations with period T = p T  o, where p = m �9 2 n, 
n = 0, 1,2 . . . .  and T O = 2~r/r then sampling at the original period T O 
would give p points on the X, Y plane. For sufficiently large p it would be 
very difficult to distinguish isolated points from clusters of randomly 
distributed points, which come from a chaotic band with a certain period, 
but sampling at the pth subharmonic frequency would give only one point 
for periodic orbit and an island of points for a chaotic band of period pT. 
More generally, if the system period T and sampling period T O are related 
by 

T = p T O (4) 
q 

p and q being incommensurable integers, then on the stroboscopic portrait 
one sees onlyp points (or islands) for all q > 1. This is a common feature of 
all discrete sampling methods: one can never recognize frequencies higher 
than the sampling frequency, but in principle can determine any sub- 
harmonics provided the total sampling time is long enough and sampled 
points could be resolved. I fp  decomposes into product of two integers i and 
j ,  then sampling at iT o or j T  o essentially increases the resolution, but 
misuse of an integer i, which is not a factor of p, will add a spurious 
multiplier i in the number of periods. To be safe, one should always go 
from low-order subharmonics to higher ones and compare the results with 
power spectra analysis whenever possible. 

This simple extension appears to be very powerful in reaching high 
resolution, the only limitation being computer time and precision. Figure 1 
shows a clearly resolved period 4096 orbit, obtained by sampling at 256 T O 
and using a double precision (29 decimal digits on a Cyber computer) to 
avoid accumulation of round-off errors. Such high resolution surpasses any 
power spectra analysis available on present-day computers. 

(b) Power spectra analysis in the frequency domain based on averag- 
ing 10 series of 8192 (rarely 16384) points fast Fourier transform. Although 
using 8192 points power spectra analysis one can hardly go beyond the 
64th subharmonic without serious aliasing, power spectra are still very 
useful in telling chaotic bands from periodic orbits (cf. Fig. 4) and explor- 
ing fine structures of periodic orbits embedded in chaotic bands of different 
periodicity (cf. Fig. 8). 

(c) Inspection of the trajectories in the X, Y plane or the projection of 
trajectories into one of the three-dimensional subspaces of X, Y, Z, U space. 
Having even lower resolution than the other two methods, it gives an 
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Fig. 1. Subharmonic stroboscopic portrait of a 4096P orbit (A = 0.4, B = 1.2). 256 points, 
sampled at 256 To. 

intuitive feeling on the bifurcation process for low-order subharmonics, say, 
p < 1 6 .  

The results to be reported in the following sections have cost quite a 
large amount  of computer time. To convey them as much as possible to the 
readers in a concise way, we need in what follows a shorthand notation. A 
period 32 orbit will be denoted by 32P, P standing for periodic orbit or 
points in the stroboscopic portrait, and a period 32 chaotic band in the 
inverse sequence by 321, I standing for inverse band or islands in the 
portrait. What we mean by period for chaotic band will be explained in the 
following section, after Fig. 5. 

4. HIERARCHY OF CHAOTIC BANDS 

To have more comparable data we started with the same parameter 
values A - 0.4, B = 1.2 as in Refs. 12 and 13. Figure 2 shows the chaotic 
region on the a-c0 plane, surrounded by period-doubling bifurcations. We 
shall not pay attention to the beating regime, separated by broken lines in 
the lower-right corner of Fig. 2. (We have discussed the nature of beating- 
entrainment transition elsewhere(22)). Two lines crossing the chaotic region 
have been examined in detail, i.e., a = 0.05 and ~0 = 0.80. The a = 0.05 line 
was studied also in Ref. 13 and we put together our results in Table I, 
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Fig. 2. Location of chaotic region in the a-o~ plane: - - ,  boundary of periodic regime; 
. . . . . .  , boundary of chaotic regime; . . . . . .  , boundary between periodic and beating regimes. 

Table I. Hierarchy of Bifurcation Sequences along a = 0.05 Line (A = 0.4, 
B = 1.2). Values of ~ Are Included in Parentheses. 

Primary sequence Secondary sequences Tertiary sequences 

IP-8192P 
(0.2-.78773625) 

2561 
(.787737) 

1281 
(.7877380-428) 

641 
(.787743-770) 

321 
(.78778- .78789) 

161 
(.787895- .7885) 

128 X 3 x 1P (.7877408-410) 
128 x 3 x 2P (.7877412) 
128 x 3 X 1I (.7877414) 
64 x 5 x 1P (.7877496-498) 
6 4 x 5 x l I  (.78775) 
64 x 3 x IP (.7877575-580) 
64 x 3 x lI (.7877600-605) 
32 x 5 x 1P (.787800-801) 
32 x 3 x 1P (.787836-842) 
32 x 3 x 21 (.787843-846) 
32 x 3 x 1I (.787847-849) 

The existence of these frequencies has been indicated in Ref. 13. 
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Primary sequence 

T a b l e  I. (continued) 

Secondary sequences 
i i i i i  i 

Tertiary sequences 

81 
(.7886- .7909) 

41 
(.791-.8295) 

81 
(.83-.8325) 

161 
(.8327-.83304) 

321 
(.83306-.83314) 

64I 
(.83315-.83317) 

1281 
(.833175) 

2561 
(.83318) 

128P-2P 
(.83319- .950475) 

i 

8 x 7 x 2 P  
8 x 3 x l ~  
8 x 3 x 2 W  
8 x 3 x 4 W  
8 x 3 x 4 I  
8 x 3 x 2 I  
8 x 3 x l I  
4 x l l x l W  
4 x 7 x l P  
4 x 3 x 1 W  
4 x 3 x 2 W  
4 x 3 x 4 ~  
4 x 3 x 8 P  
4 x 3 x 1 6 W  
4 x 3 x 4 I  
4 x 3 x 2 I  
4 x 3 x l I  
4 x 3 x l I  
4 X 3 X 2 I  
4 x 3 x 4 I  
4 x 3 x 8 W  
4 x 3 x 4 W  
4 x 3 x 2 W  
4 x 3 x l W  
4 x 3 x 1 P  
8 x 3 x l I  
8 x 3 x 2 I  
8 x 3 x 4 P  
8 x 3 x 2 P  
8 x 3 x l P  

8 x 5 x l I  
8 x 5 x 4 P  

? 
8 x 5 x l W  

(.7888) 
(.79-.7901597) 
(.79015975- .790223) 
(.790225-250) 
(.790275) 
(.790276-278) 
(.790279-360) 
(.793-.793001) 
(.7934-.79345) 
(.80102-234) 
(.802360-2996) 
(.803-.803175) 
(.803177-195) 
(.803197-200) 
(.80322-323) 
(.80324-336) 
(.80338-440) 
(.818-.8192) 
(.81928-934) 
(.81936-938) 
(.8194-.81943) 
(.819433-728) 
(.819731-.8202) 
(.82025-.8214) 
(.8245-.82599) 
(.831-.83102) 
(.83104) 
(.83106) 
(.8311-.83112) 
(.83114-.83120) 

(.83194-.83196) 
(.83198) 

(.832-.832005) 

4 8 x 3 x 2 P  (.80321) 
24x 3 x lI (.80331) 
2 4 x 3 / 2 1  (.80332) 
1 2 x 5 •  (.81925) 
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Table ll. 

P e r i o d  

Hao and Zhang 

A Period-Doubling Bifurcation Sequence in Eqs, (3) 

R a n g e  in  oJ oJ. 8. 

1 1 - 0 .39820  0 .398205 

2 2 0 .39821 - 0 .71305 0 .7130625  

3 4 0 .713075  - 0 .769996  0 .7699998  

4 8 0 .770000  - 0 .78337  0 .783435 

5 16 0 .78350  - 0 .786752  0 .786776  

6 32 0 .78680  - 0 .78752  0 .787525 

7 64 0 .78753  - 0 .78769  0 .787695 

8 128 0 .78770  - 0 .787726 0 .7877265  

9 256 0 .787727  - 0 .787734  0 .78773425  

10 512 0 .7877345  - 0 .7877358  0 .78773585  

11 1024 0 .7877359  - 0 .78773615  0 .787736175  

12 2048 0 .78773620  

13 4096  0 .78773624  

14 8192 0 .78773625  

5.53 

4 .24 

4 .02 

4 .46 

4.41 

5.40 

4 .04 

4.88 

4.92 

where frequencies, whose existence was indicated in Ref. 13, were marked 
by a superscript a. With our high resolution we succeeded in recognizing 
systematically many inverse bands within the chaotic region and in seeing a 
lot of secondary bifurcation sequences with both direct and inverse seg- 
ments. 

As regards the primary direct sequence we have located rather high- 
order bifurcations up to p = 8192 (see Table II). To our knowledge, this is 
the longest period-doubling sequence ever identified for a system of nonlin- 
ear differential equations. The estimate of the convergence rate 

8n __ 03n - -  ("%+ 1 ( 5 )  

r 1 - -  ~ n + 2  

given in the last column of Table II, shows that most probably we have 
here the same Feigenbaum constant 8. Critical slowing-down near every 
bifurcation point has prevented us from locating the boundaries of each 
period with high precision and we simply take the middle point between 
two last seen consecutive periods to be the boundary, Thus we cannot 
expect a better estimate of 8 in this way. 

In the third column of Table I there are a few indications on the 
existence of perodicities of the third level, embedded in chaotic bands of 
the secondary inverse sequence. This is indeed the case, as it can be seen 
more clearly from the results along the w = 0.80 line, summarized in Table 
III. 

This hierarchy structure is visualized in Fig. 3. It shows schematically 
the bifurcations at fixed external frequency o~ = 0.80. When the amplitude 
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Table IIh Hierarchy of Bifurcation Sequences along ~ = 0.8 line (A = 0.4, 
B = 1.2). Values of a Are Included in Parentheses. 

Primary sequence Secondary sequences Tertiary sequences 

2P-128P 
(.01- .04696) 

321 
(.04698- .04701) 

16I 
(.047025- .047197) 

8I 
(.047198- .0484) 

41 
(.04845-.0535) 

2I 
(.0545-.0725) 

4I 
(.0735-.0809) 

81 
(.68092-.0825) 

3 2 x 3 x  

1 6 •  
1 6 x 3 x  
1 6 x 3 x  
1 6 •  
1 6 x 3 x  
8 •  
8 •  
8 x 3 x  
8 x 3 x  
8 x 3 x  
8 x 3 x  
8 x 3 x  
8 x 3 x  
8 x 3 x  

8 • 2 1 5  
4 • 2 1 5  
4 x 5 •  
4 x 5 •  
4 x 5 •  
4 •  
4 • 2 1 5  
4 x 5 x  
2 x 7 x  
2 x 7 x  
2 •  
2 x 7 x  
2 •  
2 x 7 x  
2 x 7 x  

? 

2 x 7 x  
4 •  
4 x 3 x  
4 x 3 x  
4 x 5 x  
8 x 5 x  
8 x 3 x  
8 x 3 x  
8 x 3 x  

1P (.04700) 

1P (.0471000-055) 
2P (.0471100-114) 
4P (.0471116-128) 
2I (.047113) 
lI .047114-118) 
lP .047591-637) 
2P .0476380-575) 
4P .0476580-625) 
8P .0476630-640) 
16P .0476641-642) 
32P .0476643) 
8I .0476644-649) 
41 .0476651-654) 
21 .0476656-699) 

1I .047670-688) 
1P (.048495) 
1P (.048945-959) 
2P (.04896- .04900525) 
4P (.049010-011) 
8P (.049012) 
2I (.049015) 
1I (.049016-025) 
1P (.05580-585) 
2P (.055860-875) 
4P (.05588) 
8P (.055885) 
2I (.05589) 
1I (.055895-920) 
8P (.0704) 

1P (.0705) 
1I (.0770-772) 
2P (.0773) 
1P (.0775-776) 
IP (.0795) 
1P (.08145) 
lI (.0817) 
2P (.08175) 
1P (.08180-185) 

9 6 x 3 x  lI (.0471135) 

96 X 3 X 1P (.0476650) 
48 x 5 x 1P (.0476662) 
48 x 3 x 1P (.0476673-75) 
48 x 3 x 2P (.0476676) 
48 x 3 x 1I (.0476677-80) 
24 x 3 x 1I (.047679-680) 

20 x 5 x 1P (.0490218-20) 



778 Hao and Zhang 

Primary sequence 

T a b l e  III. (contmued) 

Secondary sequences Terfiarysequences 

161 
(.08255-.08285) 

32I 
(.08286-.082914) 

64I 
(.082916- .08293) 

1281 
(.0829302-327) 

256I 
(.0829332-338) 

512P-IP 
(.082934-20.0) 

16 • 3 x 1I (.082671-682) 
16 x 3 x 8P (.082683) 
16 x 3 x 4P (.082684-685) 
16 x 3 x 2P (.0826900-925) 
16 x 3 x 1P (.082695-706) 

32 x 5 x 1P (.082902) 
32 x 7 x 1P (.08291) 

128 • 3 • 1P (.0829310-312) 
128 • 7 • 1P (.0829318) 
256 x 3 x 1P (.082933) 

4 8 X 7 X 1 P  (.08268) 

Fig. 3. Hierarchy of period-doubling bifurcation sequences schematic, not to scale). Only 
one secondary sequence embedded in a 81 band is shown. 
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a is very small the periodic force cannot entrain the system and there exist 
two independent frequencies (beating regime, not shown in Fig. 3). With a 
increasing the system passes through a sharp beating-entrainment transition 
(horizontal broken line in Fig. 3) and a period-doubling sequence takes 
place with p = 2. Its inverse sequence merges with that of another period- 
doubling sequence, which ends with only one period when the external 
force takes over. Therefore the chaotic behavior appears as a compromise 
between two trends: at small a the limit cycle tries to show itself up, at 
large a the external force dominates, and chaotic behavior exists in between 
as a new regime of nonlinear oscillation. This is the physical understanding 
of period-doubling bifurcation and associated chaotic behavior, which we 
mentioned at the end of the Introduction. 

Periodic and chaotic orbits can be distinguished best by subharmonic 
stroboscopic sampling. (16) For not-very-high-order subharmonics the dis- 
tinctions are clearly expressed in the power spectra and trajectories in the 
X, Y plane. In Figs. 4 and 5 we compare the spectra and trajectories of 2P, 
4P, 8P, 16P, and 32P orbits with that of 21, 41, 81, 161, and 321 orbits. What  
is remarkable are the sharp peaks in the broad-band spectra of chaotic 
orbits. This has been seen before (9~ and called phase coherence in Ref. 15. 
It seems to be related to the splitting of strange attractor, seen in Fig. 5f-j. 
In all these figures a trajectory was plotted for 305 periods. If we drew 
many more periods, only a winded black strip would remain in Fig. 5f-j. It 
is this number of windings which determines the period of a chaotic band. 
(Notice: in both Fig. 5e and 5j the splitting of the outermost loop into two 
has not been well resolved.) 

The oL = 0.05 and ~0 = 0.8 lines were chosen before we located the 
position of 1I, 21, 41 . . . .  regions in the a-o~ plane, marked by dotted lines 
in Fig. 2. Thus the a = 0.05 line crosses only 41 and higher bands, the 
co = 0.8 line crosses only 21 and higher bands, both missing the 1I region. 
By increasing a to 0.08 we drew the trajectories of 1I, 21, and 4I chaotic 
orbits, as shown in Fig. 6, which give a better feeling of how a "strange 
attractor ''4 splits. 

Now we turn to the systematics of periodicities, embedded in chaotic 
bands. In a kI chaotic band periodicities of the next level always appear to 
have k as a factor. Therefore, simple period 3, 5, or 7 may be found only in 
1I band. In a 8I band one never sees period 12, 20, or 28, because the 
smallest period with factor 3, 5, or 7 would be 24, 40, or 56, respectively. In 
general, one may have period 

P = k .  m - 2 "  (6) 

4 We use this term to name the apparently chaotic object seen numerically. 
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where k is the period of the underlying chaotic band, m = 3, 5, 7, 1 1 , . . . ,  
and n = 0, 1, 2 , . . . .  This refers to the periodic orbits in the direct sequence 
as well as to the period of chaotic bands in the inverse sequence. In  all 
cases studied so far, we have not encountered any exception to this rule. 

Figure 7 shows schematically the structure of a 8I band  which is the 
one emphasized in Fig. 3 and has been searched in more detail. A direct 
bifurcation sequence with period 8.3.2 n, n -- 0-5, and the associated inverse 
sequence with period 8.3.2 n, n = 0-3,  were located explicitly. Within the 24I 
and 481 chaotic bands of this secondary sequence, shorter tertiary se- 
quences with 24 or 48 as  factor in their period were identified. 

This hierarchy structure may  be interpreted by splitting and shrinking 
of the strange attractor at certain parameter  values. After pr imary splitting 
one can imagine an arm of the strange attractor as a rope made of infinite 
number  of threads. At certain parameter  values threads in each arm shrink 
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Fig. 5. Trajectories in the X, Y plane. (a) 2P, (b) 4P, (c) 8P, (d) t6P, (e) 32P, (f) 2I, (g) 4I, 
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Fig. 6. S t range  a t t rac tors  (A = 0.4, B = 1.2), (a) 1I (a  = 0.08, o~ = 0.86); (b) 2I  ( a  = 0.08, 
~o = 0 .9i ) ;  (c) 41 (a  = 0.08, ~o = 0.915). 
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simultaneously into a finite number of threads, producing thereby a 
periodic orbit. This process repeats at each level on smaller and smaller 
scales. It reflects in the power spectra as well. For example, 24P orbits 
embedded in 8I or 41 chaotic bands can easily be identified for having a 
8 • 3 or 4 • 3 • 2 fine structure (see Fig. 8). 

To conclude this section, we make two remarks. First, one can estimate 
the convergence rate of primary chaotic bands and secondary direct 
sequences, using data given in Tables I and III. Everywhere we find almost 
the same range of ~ value. Second, being impossible to make an overall 
search by very small steps, we certainly have missed many periodicities. 
m = 3, 5, 7 in formula (6) correspond to most easily found periods. This 
explains why there are so many of them in Tables I and III. There is only 
one case with m = 11 and we have nothing to say about m = 9. 

5. FINITENESS OF CHAOTIC REGION IN PARAMETER SPACE 

It is interesting to ask what happens with the chaotic region if we make 
the original system (1) nearer to or further away from the time-independent 
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stationary state, i.e., if we weaken or strengthen the inequality (2). The A-~0 
plane for fixed B, a (Fig. 9) and the B-w plane with A, a fixed (Fig. 10) 
look more complicated than the a-0~ plane (Fig. 2). 

In the lower-right corner of Fig. 9 we see a part of another chaotic 
region, surrounded by 3.2" (n = 0, 1,2 . . . .  ) type period-doubling bifurca- 
tions. We have looked at it closer along the A -- 0.36 and co = 0.9 lines. It 
seems to have a structure similar to what we described in the previous 
section, if one changes all periods by a factor of 3. 

The 3P regime occupies an even more conspicuous place in the B-~o 
plane (Fig. 10). In both Figs. 9 and 10 the 3P goes into chaotic region 
directly, without any period-doubling sequence in between (probably there 
is a 3I intermediate state, which can hardly be distinguished from very long 
transients of 3P). It is unclear to us whether this fact is relevant to the cubic 
nonlinearity in the particular model or it is a common feature shared by 
other systems too. It might be a manifestation of some analog to the 
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Li-Yorke theorem, (z3) which was proved onlv for one-dimensional map- 
pings and says that period 3 (then generalized to 5, 7, etc.) always implies 
chaos. Anyhow, the role of period 3 in the case of differential equations 
requires further scrutiny. The same comment holds for 5P in Fig. 10. 

The structure of a small region near the intersection of 3P, 2nP, and 
chaotic regimes on both Figs. 9 and 10 remain unresolved. We leave this 
question for future study. 

A comparison of Figs. 2, 9, and 10 suggests to us a conjecture that the 
chaotic regime occupies finite region in the parameter space. This seems 
not to be in disagreement with recent observations on the Lorenz model. (24) 
If, in addition, chaotic bands and periodicities embedded in them are 
nested one into another, then so-called "window structure" of periodic 
orbits, mentioned by many authors, e.g., Ref. 13, would be a simple 
consequence of this nesting. Our data in Tables I and III support this 
nested character of secondary bifurcation sequences, e.g., the order of all 
direct and inverse sequences are reversed at two opposite sides of the 
parameter range. The same seems to be true for tertiary sequences, but one 
needs finer data to be confident. 

6. DISCUSSION 

The forced Brusselator shows very complicated bifurcation and cha- 
otic behavior in certain regions of the control parameter space. Still if only 
one parameter varies, we see many features common to one-dimensional 
discrete mappings. Phenomena related to the role of 3P orbits require 
further study. The hierarchy structure of bifurcation sequences should be 
observable also in mappings and other nonlinear differential equations. In 
other words, we expect not only the existence of a few universal numerical 
characteristics, but also the universality of the essential overall structure of 
the bifurcation scheme. 

Having in mind the results reported in this paper, we can review other 
systems in retrospect. 

In the 5-mode truncated Navier-Stokes equations, (7) most probably 
what was observed was a primary direct sequence up to 32P and a 
secondary sequence with m = 3, embedded in 1I or 21 chaotic band. A 
power spectrum analysis would help to reveal its identity. 

In the R6ssler model the presence of 1P to 8P and 1I to 81 bands has 
been observed clearly. (9) The authors of Ref. 9 have seen also 16P and 16I 
bands. Owing to limited precision of the analog computer, no boundaries 
and 6 values were estimated. 

In the parametrically excited pendulum, (H) a direct sequence from 1P 
to 32P was reported and two points belong to 21 and 4I bands observed. It 
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was noticed in Ref. 11 that at the far end of the parameter axis 1P orbit 
there appears again what would be another inalcation on finiteness of 
chaotic region. 

In all cases cited only one parameter has been varied. It would be very 
useful to enlarge the parameter space, as our results have shown, but what 
is the best (or minimal) parameter space for a given dynamical system to 
explore the bifurcation and chaotic behavior in all its complexity and 
variety? 

To conclude this paper we would like to emphasize once more our 
understanding of period-doubling bifurcations and the associated chaos as 
a new chapter in the theory of nonlinear oscillation, although it certainly 
throws new lights on fundamental problems of statistical physics. 
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